LA FONCTION LOGARITHME DÉCIMAL E02

EXERCICE N°1

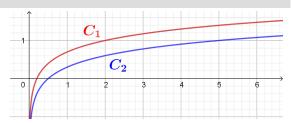
Reproduire et compléter le tableau de valeurs suivant en utilisant les propriétés de la fonction logarithme décimal (arrondir éventuellement à 0,1 près $\log(x)$):

x	1	2	5	10	20
log(x) arrondi à 0,1 près					
arrondi à 0,1 près					

EXERCICE N°2

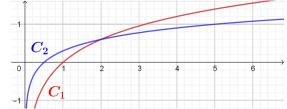
Exprimer le logarithme décimal de chacun des nombres suivants en fonction de log(3) et de log(7) :

1) 0,00147


2) 11 907

3) 2700×490

EXERCICE N°3


On a représenté dans le repère ci-dessous le des fonctions f et g définies sur]0; $+\infty[$ par : $f(x)=\log(5x)$ et $g(x)=\log(2x)$.

Identifier chacune des courbes en justifiant la réponse.

EXERCICE N°4

On a représenté dans le repère ci-dessous le des fonctions f et g définies sur]0; $+\infty[$ par : $f(x)=\log(x^2)$ et $g(x)=\log(2x)$.

- 1) Identifier chacune des courbes en justifiant la réponse.
- 2) Lire graphiquement l'image de 5 par la fonction f de 3 par la fonction g
- 3) Résoudre graphiquement l'équation $f(x)=g(x)^T$.

EXERCICE N°5

En astronomie, la magnitude apparente, notée M, revient à mesurer combien une étoile apparaît brillante vue de la Terre. L'astronome Norman Pogson (1829-1891) a introduit la formule

suivante : $M = -2.5\log(E) + k$

où E est l'éclat de l'étoile observée (puissance reçue par unité de surface) et k est une constante indépendante du choix de l'étoile.

L'étoile Véga a une magnitude apparente fixée à 0. On note E_0 l'éclat apparent de Véga.

- 1) Exprimer la constante k à l'aide de $\log(E_0)$.
- 2) Montrer alors que $M = -2.5 \log \left(\frac{E}{E_0} \right)$
- 3) Si l'étoile observée est perçue comme plus brillante que l'étoile Véga,
- **3.a)** quel est le signe de sa magnitude apparente ?
- **3.b**) Que peut-on dire de sa magnitude par rapport à celle de Véga?
- 4) Déterminer la magnitude apparente des astres suivants d'éclat E :

4.a) 4.b) 4.c) Vénus : $E = 69 \times 10^{-4} E_0$ Mars: $E = 8,32 E_0$ Neptune : $E = 6,9 \times 10^{-4} E_0$

On arrondira à 0,1 près.

5) Déterminer l'éclat des astres suivants de magnitude apparente M en fonction de E_0 :

5.a) Soleil: M = -26.8 Soleil: M = -12.6 Soleil: M = -12.6 Uranus: M = 5.7

LA FONCTION LOGARITHME DÉCIMAL E02

EXERCICE N°1

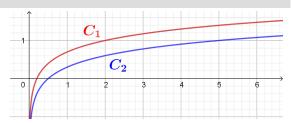
Reproduire et compléter le tableau de valeurs suivant en utilisant les propriétés de la fonction logarithme décimal (arrondir éventuellement à 0,1 près $\log(x)$):

x	1	2	5	10	20
log(x) arrondi à 0,1 près					
arrondi à 0,1 près					

EXERCICE N°2

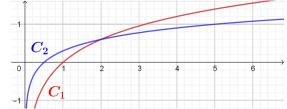
Exprimer le logarithme décimal de chacun des nombres suivants en fonction de log(3) et de log(7) :

1) 0,00147


2) 11 907

3) 2700×490

EXERCICE N°3


On a représenté dans le repère ci-dessous le des fonctions f et g définies sur]0; $+\infty[$ par : $f(x)=\log(5x)$ et $g(x)=\log(2x)$.

Identifier chacune des courbes en justifiant la réponse.

EXERCICE N°4

On a représenté dans le repère ci-dessous le des fonctions f et g définies sur]0; $+\infty[$ par : $f(x)=\log(x^2)$ et $g(x)=\log(2x)$.

- 1) Identifier chacune des courbes en justifiant la réponse.
- 2) Lire graphiquement l'image de 5 par la fonction f de 3 par la fonction g
- 3) Résoudre graphiquement l'équation $f(x)=g(x)^T$.

EXERCICE N°5

En astronomie, la magnitude apparente, notée M, revient à mesurer combien une étoile apparaît brillante vue de la Terre. L'astronome Norman Pogson (1829-1891) a introduit la formule

suivante : $M = -2.5\log(E) + k$

où E est l'éclat de l'étoile observée (puissance reçue par unité de surface) et k est une constante indépendante du choix de l'étoile.

L'étoile Véga a une magnitude apparente fixée à 0. On note E_0 l'éclat apparent de Véga.

- 1) Exprimer la constante k à l'aide de $\log(E_0)$.
- 2) Montrer alors que $M = -2.5 \log \left(\frac{E}{E_0} \right)$
- 3) Si l'étoile observée est perçue comme plus brillante que l'étoile Véga,
- **3.a)** quel est le signe de sa magnitude apparente ?
- **3.b**) Que peut-on dire de sa magnitude par rapport à celle de Véga?
- 4) Déterminer la magnitude apparente des astres suivants d'éclat E :

4.a) 4.b) 4.c) Vénus : $E = 69 \times 10^{-4} E_0$ Mars: $E = 8,32 E_0$ Neptune : $E = 6,9 \times 10^{-4} E_0$

On arrondira à 0,1 près.

5) Déterminer l'éclat des astres suivants de magnitude apparente M en fonction de E_0 :

5.a) Soleil: M = -26.8 Soleil: M = -12.6 Soleil: M = -12.6 Uranus: M = 5.7