Seconde Préparation au DS02

Exercice 1

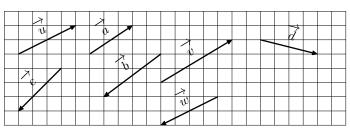
Définition:

Soit \overrightarrow{u} un vecteur. On appelle vecteur opposé du vecteur \overrightarrow{u} , le vecteur noté $-\overrightarrow{u}$ définit par:

• la même direction que le vecteur \overrightarrow{u}

- le sens opposé au vecteur \overrightarrow{u}
- la même longueur que \overrightarrow{u}

Dans le plan, on considère les 7 vecteurs ci-dessous:



- 1. Nommer le ou les vecteurs opposés au vecteur \overrightarrow{u} .
- 2. Tracer un vecteur \overrightarrow{e} opposé au vecteur \overrightarrow{d} .

Exercice 2

Soit ABCD un parallélogramme. On note:

- I le milieu du segment [AB];
- J le milieu du segment [DC].

Déterminer dans chaque cas un représentant du vecteur résultant:

a.
$$\overrightarrow{AC} + \overrightarrow{JA}$$

b.
$$\overrightarrow{AI} + \overrightarrow{AL}$$

b.
$$\overrightarrow{AI} + \overrightarrow{AD}$$
 c. $\overrightarrow{AB} + \overrightarrow{IJ} - \overrightarrow{DJ}$

Exercice 3

Soient A et B deux points du plan, on note I le milieu du segment [AB]

- 1. Compléter les pointillés pour vérifier la relation vectorielle suivante: $\overrightarrow{AI} + \overrightarrow{AI} = \overrightarrow{A....}$
- 2. Recopier et compléter avec les mots "double" et "moitié" les phrases suivantes:

$$\overrightarrow{AI}$$
 est ... de \overrightarrow{AB}

(a.)
$$\overrightarrow{AI}$$
 est ... de \overrightarrow{AB} (b.) \overrightarrow{AB} est ... de \overrightarrow{AI}

3. En rapport avec la question précédente, compléter les pointillés avec le nombre adéquat:

(a.)
$$\overrightarrow{AI} = \dots \overrightarrow{AB}$$
 (b.) $\overrightarrow{AB} = \dots \overrightarrow{AI}$

$$(b.)$$
 $\overrightarrow{AB} = \dots \overrightarrow{AI}$

Exercice 4

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs. Simplifier chacune des sommes vectorielles suivantes :

a.
$$3\overrightarrow{u} - 2\overrightarrow{v} + 2\overrightarrow{u} - \overrightarrow{v}$$

b.
$$2 \cdot (\overrightarrow{u} + \overrightarrow{v}) - \overrightarrow{u}$$

d.
$$-(\overrightarrow{u} + \overrightarrow{v}) + 2 \cdot (\overrightarrow{u} - \overrightarrow{v})$$

d.
$$-(\overrightarrow{u} + \overrightarrow{v}) + 2 \cdot (\overrightarrow{u} - \overrightarrow{v})$$
 e. $\frac{2}{3} \cdot (2 \cdot \overrightarrow{u} - \frac{3}{2} \cdot \overrightarrow{v}) - \frac{1}{6} \overrightarrow{u}$

Exercice 5

Dans le plan, on considère A, B, C trois points du plans non-alignés.

Pour chaque question, déterminer la valeur du réel k vérifiant l'égalité:

a.
$$2 \cdot \overrightarrow{AB} + 2 \cdot \overrightarrow{BC} + \overrightarrow{AC} = k \cdot \overrightarrow{AC}$$

b.
$$\overrightarrow{AB} + 2 \cdot \overrightarrow{AC} + 4\overrightarrow{BC} = k \cdot (\overrightarrow{AC} + \overrightarrow{BC})$$

c.
$$3 \cdot \overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = k \cdot \overrightarrow{AB}$$

d.
$$3\overrightarrow{AB} - \overrightarrow{BC} + \overrightarrow{AC} + 2 \cdot \overrightarrow{BA} = k \cdot \overrightarrow{AB}$$

Exercice 6

Soit A, B, C et D quatre points du plan. Dans chaque cas, démontrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} , vérifiant la relation imposée, sont colinéaires:

a.
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

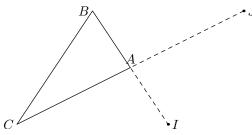
b.
$$5 \cdot \overrightarrow{AD} = 2 \cdot \overrightarrow{AC} + 3 \cdot \overrightarrow{BD}$$

c.
$$\overrightarrow{AD} + \overrightarrow{BD} + 2 \cdot \overrightarrow{CB} = \overrightarrow{0}$$
 d. $3 \cdot \overrightarrow{AD} + 4 \cdot \overrightarrow{BC} = 7 \cdot \overrightarrow{AC}$

d.
$$3 \cdot \overrightarrow{AD} + 4 \cdot \overrightarrow{BC} = 7 \cdot \overrightarrow{AC}$$

Exercice 7

Dans le plan, on considère le triangle quelconque ABC. On note respectivement I et J les symétriques respectifs de B et de Cpar rapport à A:



Exprimer en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} les vecteurs suivants:

c. \overrightarrow{BC}

Exercice 8

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les trois points A, B, C définis par : A(2; -3) ; B(-4; 2) ; C(0; -1)

1. Déterminer les coordonnées du vecteur \overrightarrow{u} défini par: $\overrightarrow{u} = 2 \times \overrightarrow{AB} + 2 \times \overrightarrow{BC} + \overrightarrow{AC}$

2. Quelle expression simplifiée admet le vecteur \overrightarrow{u} ?

Exercice 9*

1. (a.) Placer trois points A, B et C non-alignés dans le plan.

(b.) Tracer un représentant de la somme: $\overrightarrow{u} = -\overrightarrow{AB} - 2 \cdot \overrightarrow{BC} + 2 \cdot \overrightarrow{AC}$

c. Quelle conjecture peut-on émettre?

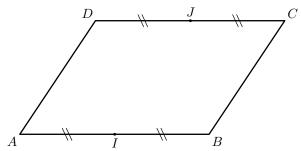
2. Etablir que: $\overrightarrow{u} = \overrightarrow{AB}$

Indication: On utilisera la relation de Chasles:

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

Exercice 10

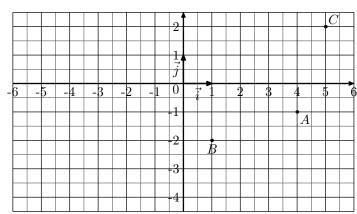
On considère le parallélogramme ABCD représenté ci-dessous où les points I et J sont les milieux respectifs des segments [AB]et [CD].



A l'aide des points de la figure, exprimer un représentant de la somme: $2 \cdot \overrightarrow{AJ} + 2 \cdot \overrightarrow{CB}$

Exercice 11

On considère muni du repère $(O; \overrightarrow{i}; \overrightarrow{j})$ orthonormé et des trois poins A, B, C représentés ci-dessous:



- 1. (a.) Donner, sans justification, les coordonnées des vecteurs: \overrightarrow{AB} ; \overrightarrow{BC} ; \overrightarrow{AC}
 - (b.) Déterminer les coordonnées du vecteur \overrightarrow{u} défini par : $\overrightarrow{u} = 3 \cdot \overrightarrow{AB} \overrightarrow{CB} + \overrightarrow{CA}$
- 2. Déterminer l'unique nombre réel k $(k \in \mathbb{R})$ vérifiant: $\overrightarrow{u} = k \times \overrightarrow{AB}$

Exercice 12

On considère le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ quelconque et les trois points suivants déterminés par leurs coordonnées: A(2;1) ; B(3;2)

- 1. Déterminer les coordonnées du vecteur $3 \cdot \overrightarrow{AB}$.
- 2. Déterminer les coordonnées du point D tel que :

$$\overrightarrow{AD} = 3 \cdot \overrightarrow{AB}$$
.

Exercice 13

Soit A, B, C et D quatre points du plan vérifiant la relation:

$$\overrightarrow{AC} - 3 \cdot \overrightarrow{BD} + 2 \cdot \overrightarrow{BC} = \overrightarrow{0}$$

Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exercice 14

Soit A, B, C trois points du plan vérifiant la relation:

$$-\frac{1}{2}\cdot\overrightarrow{AB}+\frac{5}{2}\cdot\overrightarrow{BC}-\overrightarrow{BA}+\overrightarrow{CB}=\overrightarrow{0}$$

- 1. Montrer que ces trois points vérifient: $\overrightarrow{AB} = \frac{3}{2} \cdot \overrightarrow{AC}$
- 2. Que peut-on dire des points A, B, C?

Exercice 15

On munit le plan d'un repère $\left(O\,;I\,;J\right)$ orthonormé.

On considère les points:

$$A\left(\frac{1}{4}\,;\frac{1}{3}\right) \quad ; \quad B\left(1\,;\frac{5}{6}\right) \quad ; \quad C\left(-\frac{1}{2}\,;\frac{7}{6}\right)$$

Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas deux vecteurs colinéaires.