ARITHMÉTIQUE

I Les ensembles de nombres entiers

Définition n°1. Les entiers naturels et les entiers relatifs

- L'ensemble des nombres entiers naturels $\{0;1;2;3;4;...\}$ se note N
- L'ensemble des entiers relatifs $\{...;-2;-1;0;1;2;...\}$ se note \mathbb{Z}

Remarque n°1.

Tout entier naturel est un entier relatif, l'ensemble \mathbb{N} est donc inclus dans l'ensemble \mathbb{Z} . On note $\mathbb{N} \subseteq \mathbb{Z}$.

II Quelques définitions

Soient a, b des éléments de \mathbb{Z}

On note $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ ou $(a,b) \in \mathbb{Z}^2$

Définition n°2. diviseurs, multiples

Si il existe un entier relatif k tel que : a = kb

Alors on peut dire que:

- b divise a, on peut noter $b \mid a$
- b est un diviseur de a
- a est divisible par b
- a est un multiple de b

Remarque n°2.

La réciproque est vraie.

Exemple n°1.

Pour a=42 b=7, on pose $k=\frac{42}{7}=6$ et donc $42=6\times 7$.

Ainsi 7 divise 42, 7 est un diviseur de 42, 42 est divisible par 7 et 42 est un multiple de 7.

Remarque n°3.

- Tous les nombres divisent zéro mais zéro ne divise aucun nombre.
- 1 divise tous les nombres.

Définition n°3. Nombre pair, nombre impair

- On dit que a est un nombre pair si et seulement si il existe un entier relatif k tel que : a=2k .
- On dit que **a est un nombre impair** si et seulement si il existe un entier relatif k tel que : a=2k+1 .

Exemple n°2.

- 28 est un nombre pair, en effet $28=2\times14$
- 31 est un nombre impair, en effet $31 = 2 \times 15 + 1$

Définition n°4. Nombre premier

Un nombre premier est un nombre entier naturel qui admet exactement deux diviseurs positifs : 1 et lui-même

Exemple n°3.

- 31 admet pour seuls diviseurs positifs 1 et 31 donc 31 est un nombre premier.
- 6 admet pour diviseurs positifs 1; 2; 3 et 6, il n'est donc pas premier.
- 1 n'admet qu'un seul diviseur positif : lui-même. Il n'est donc par un nombre premier.

Remarque n°4.

Si b est un diviseur de a alors -b (l'opposé de b) est aussi un diviseur de a. La plupart du temps, nous travaillerons dans \mathbb{N} , nous ne noterons donc que les diviseurs positifs.